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1. INTRODUCTION

Korovkin's well-known result, [4, p. 14] and [5, p. 7], states that for a
sequence L n of positive linear operators and for a continuous function f,
Ln(f; x) converges uniformly to f provided Ln(h, x) converges uniformly
to hex) (i = 0, 1,2), h being appropriate functions. Shisha and Mond,
in [6] and [7], and DeVore [1] determined the rate of convergence of such
sequences Ln(f, x) in terms of the moduli of continuity off and 1'.

Our purpose is to modify these results on the rate of convergence so as to
apply to operators defined for functions on, e.g., [0, (0) or (~oo, (0).
Applications to Baskakov and Szasz operators and various convolution
operators are given yielding several new results.

2. DOMAIN OF OPERATORS ENLARGED TO INCLUDE FUNCTIONS

WITH NONCOMPACT SUPPORT

In many interesting cases in which a sequence of positive linear operators
occurs, the domain includes functions with noncompact support. Korovkin's
theorem does not apply directly to those, [4, p. 14] and [3, p. 7], though in
Korovkin's book [4, pp. 53-54] it is made clear that provided that the
functions belonging to the domain are bounded, in some special cases the
theory applies. Sikkema [8] treats, in a somewhat different context, the case
of functions with non-compact support and of polynomial growth.

In treating unbounded functions with noncompact support, it is important
that proper bounds on the functions be required, as is seen from the following
example: consider the real functions f in qo, (0) for which limx _ x f(x) e-X

exists, and let Ln(f(t); x) = Bn[f(t); x)] + fen) r n (where Bn[f] is
Bernstein's polynomial). Then Ln(t k , x) -+ x k for k = 0, 1,2, uniformly in
[0, 1J, but Ln(et , x) -+ eX + 1, uniformly in [0, I].
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In this section modified versions of Korovkin's Theorem and theorems
concerning rate of convergence will be given. While there is neither claim
of optimality nor of simplicity of statement, these modified versions are very
readily applicable to a number of quite important special cases.

We shall need the following definition that will sum up the conditions for
our modified approximation theorems:

DEFINITION 2.1. A sequence Ln(f(t); x) of linear-positive operators is of
type :%(T, S, J-L) if the domain of each Ln consists of all functions (or all
measurable functions) on Tsatisfying there IJ(t)! :s;; M(f)(t 2+ 1) J-L(t) and if

(a) II Ln(tk; x) - x k Ilc(s) = 0(1) as n - 00, for k = 0, 1,2,

and

(b) II LnC(t - X)2 J-L(t); x)[lc(s) :s;; K II Ln«t - X)2; x)llc(s)
0= K(J-LnCS))2 0= KJ-Ln2 = 0(1),

where TC(-oo, (0) is closed, S = Tn [a,b], -00 < a < b < 00, and
J-L(t) ~ 1.

THEOREM 2.1. Let Ln(fU); x) be a sequence of linear positive operators of
type :%(T, S, J-L).

(A) For J(x) continuous on S1 , S1 C S, S1 = S. , we have

II LnCJ(t); x) - J(x)llc(s,) - 0;

(B) If, in addition, S1 = [a, b] and S2 = [a2, b2]C S1 , and if, for some
1] > 0, [a2 -1], b2+ 1]] n Tn {(-oo, (0) - S1} = 0, then

II Ln(f(t); x) - J(x)[lc(s2)

:s;; IIJ(t)11 '11 Ln(1, x) - 111 + II Ln(1, x) + 111 w(f, J-tn) + LJ-tn2. (2.0)

(C) If, in addition, f' is continuous in S1 , then

il Ln(f(t), x) - J(x)llc(s2) ~ II Ln(l; x) - 111 '11fll + II Ln(t - x; x)11 '11f'(x)11

+ w(f', o)(J-tn2o- 1 + J-tn II Ln(l; x)111 /2) + LJ-tn2.

Here w is the modulus of continuity on S1 , the norms are sup on S2 , and
L is a constant.

COROLLARY. If Ln(l, x) = 1 and Ln(t, x) = x, then the conditions of
Theorem 2.1.C. imply

II Ln(f; x) - JOIlc(s2) :s;; 2LJ-tnw(f', J-tn) + LJ-Ln2.
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Proof We shall prove B following Shisha and Mond. (A) and (C)
following Korovkin and DeVore, can be proved similarly. Let 8 > O. For
x E 52' t E [a2 - Tj, b2+ Tj] n T (and therefore t E 51), we have, as in [6]
(with wO = w(f, .»,

Ijet) - j(x) I :C w(1 t - x I) :C (1 + (t - X)2 8-2) w(8). (2.1)

For x E52 = [a2, b2], t E{( - 00, 00) - [a2 - Tj, b2+ Tj]} n T, we can write
Ij(t)1 :C M(f)(t2+ 1) ft(!) :C M(f) M 1(t - X)2 ft(t). Also, for x E52 we have
Ij(x)1 :C 11/llc(s ) Tj-2(t - X)2. Combining these estimates we can deduce for•
t E T and x E 52 ,

I jet) - j(x) I :C (l + (t - X)2 8-2) w(8) + M(f) M 1(t - X)2 ft(!)

+ 11/llc(s.) Tj-2(t - X)2,

from which (2.0) follows easily, taking 8 = ftn (If ftn = 0, one also can
obtain (2.0». An estimate for L in (2.0) is L :C M(f) M 1K + 11/llc<s.) Tj-2
where

t 2 + I
M 1 = sup ( )2'

It-xl>n t - X
xeS2

3. ApPLICATION TO BASKAKOV AND SZASZ OPERATORS

The Baskakov operators are defined by (see [9])

aJ ,/. (k)(X) ( k )
Mn(f(t);x) = L (-IYT-x'j n'

k~O •

(3.1)

where cPn(x) are real functions for which

(a) cPn(O) = 1;

(b) (_l)k cP~k)(X) ~ 0, k = 0, 1, ... , x E [0,00);

(c) cP~k)(X) = -ncP~k;Nx), k = 1,2,... , x E [0,00), for some integer I
independent of n, k and x; and

(d) cPn(x) can be expanded in a Taylor series in [0, 00). We shall
show M n E f(T; ft) with T = [0, 00) and ft(!) = (t l + 1)1/2, where I is
any integer, and a sequence of linear positive operators belongs to f(T, ft)
if it is of type f(T, 5, ft) for all appropriate 5.

Obviously the M n are linear positive operators. Suzuki [9, p. 436] showed:

for x E 5, S compact. (3.2)
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Also, using the same technique of reduction [8, pp. 334-336], one obtains
for any integer I,

for XES. (3.3)

Therefore for XES,

Mn{(t - X)2(t l + 1)1/2, x} ~ [Mn{(t - X)4, X}-1/2 Mn{t l + 1, X}]1/2

~ K20/n).

As corollaries of our theorem we get for I j(t)1 ~ K(t l + 1)1/2(t2+ 1),

II Mn(f; x) - j(x)llc(s) ---+ 0,

where S is compact and jet) is continuous on S;

and

(3.4)

(3.5)

II Mn(f; x) - j(x)llc(sl) ~ 2(bO + Ib)/n)l/2 w(f', (b(l + Ib)/n)I/2) + Lib) n-1;
(3.6)

where SI = [a + 7), b - 7)], 7) > 0, S = [a, b] and w(o) is the modulus of
continuity off on S.

The SZelSZ operators defined by

OC . k n"
Sn(f(t); x) = I j (,:;-) k! x"e-nx

,,~O

(3.7)

are a special case of the Baskakov operators with I = 0. We shall prove here
Sn E reT, 11-) where T = [0, 00) and l1-(t) = eAt with any A ~ 0. Of course
11-(t) = eAt tends to infinity much faster than any polynomial used for
Baskakov operators. Moreover, 11-(t) = eAt is a good estimate since for
jet) = exp(tl+<), € > 0, Sn is not defined.

We have

Sn(eAt; x) = exp(nx(eA/n - 1)),

and as eA / n - 1 ~ (A/n) eA / n for A ~ 0,

Si(t - X)2 eAt; x) ~ exp(xAeA/n) IX2 ( ~ reA
/
n + : eA/n!.

Therefore, recalling that Sn«t - X)2; x) = x/n, the proof that Sn E

r([o, 00), eAt) is completed.
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Furthermore,
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II f(x) - Sif(t); x)llc<sl) ~ 2w«b/n)I/2) + LI(S) n-l

and

(3.8)

(4.2)

Ilf(x) - sn(f(t); x)IIC(Sl) ~ 2(bln)I/2 w(f', (bln)I/2) + LI(S) n-l . (3.9)

(3.5)-(3.9) appear to be new results.

4. FURTHER ApPLICATIONS, CONVOLUTION OPERATORS

In this section linear positive operators arising from inversion formulae
of a wide class of convolution transforms will be discussed. Functions
operated on will be defined and measurable on (- 00, (0). (In the previous
section measurability was not needed.) We shall show that the operators
In below belong to reT, ft(t» where T = (- 00, (0).

The inversion of the Weierstrass transform yields the positive operators

In(f(t); x) = (nI47T)1/2 r; exp(-(t - X)2 n/4)f(t) dt,
-00

n = 1,2,3,... . (9.1)

We shall prove In E reT, et2 /4). Using [3, p. 78], we have

In(1, x) = I, In(t; x) = x,

In(t 2; x) = x2 + (2In) and In((t - X)2; x) = 21n.

Straightforward calculations yield that the conditions of Definition 2.1 are
satisfied.

Therefore, for I f(t) ~ M(t 2+ 1) et2 /4 and S, Sl' S2' 17 and w(') as in
Theorem 2.1, we have:

II f(x) - Iif(t); x)llc(s) -+ ° if f(t) is continuous on S;

II f(x) - In(f(t); x)llc(S2) ~ 2w«2/n)l/2) + LI(a, b, 7]) n-l;

and

(4.3)

(4.4)

Ilf(x) - In(f(t); x)llc(s2) ~ 2«2In)I/2) w(f', (2In)I/2) + LI(a, b, 7]) n-l
. (4.5)

The linear positive operators In induced by Hirschman-Widder's real
inversion formula (see [1, Chap. VI]) are given by

In(f(t); x) = foo Git - x)f(t) dt,
-CD

n = 0,1,2,... , (4.6)
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ak are real and La/;2 < 00.

We can show In E f(T, exp A I t I). From [2, Chap. VI] we have
InO; x) = 1, In(t; x) = x and

In((t - X)2; x) = La/;2 = an
2.

',~n+l

We can write for n ~ n(A)

(4.8)

Using Theorem 4.3 of [2, p. 278], we have In«t - X)4, x) :;( k 2an4, and in
addition, In(exp 2 A I t I, x) is bounded for n sufficiently large and x in a
compact set.

Therefore, for 1 f(t)1 :;( MeA1tl , we have

and

Ii In(f(t); x) - !(x)lic(S2) :;( 2anw(f', (an) + L](a, b) an2
•

(4.9) and (4.10) are new results.
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